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For the solution of problems of dynamics the methods which do not raise the question of 

determining reaction forces of constraints are of greatest interest. As a rule, reactions of 

constrainat in the systems are not known beforehand and their general properties follow 

from the properties of constraints. The basic idea of these methods is to express the pro- 

parties of constrainta throagh properties of possible displacements. Considering mechanical 

motions as coordinate transformations, it is possible to establish some correspondence 

between possible displacements and these transformations. In other words, it is possible 

to separate from the class of possible displacements all those possible displacements 

which have the properties of some transformations. Then, for such poss’ible displacements, 

these transformations yield some properties of the mechanical system which, under certain 

restraints placed on forces, redace to the existence of first integrals of equations of 

motion of the system. 

From this point of view in this paper a certain generalization of the first two fun- 

damental theorems of dynamics of a mechanical system consisting of an arbitrary number 

of material points m,, m,, . . . . with smooth holonomic constraints imposed on it, is examined. 

Theorems on motion of ctiter of mass of the system and on angular momenta of the system 

are considered. 

1. Let the mechanical system A consisting of an arbitrary number of material points 

ml8 m,, . . . . be divisible into parts (1) and (2) the properties of which are characterized by 

applied constraints, acting forces and reactions in the following manner. We introduce two 

systems of Cartesian coordinates zyz and x’y ‘z’which always remain parallel with respect 

to a stationary system of coordinates x1 yl zl. 

The origins of non-stationary systems of coordinates Axyr and A ‘z ’ y ‘I ‘, are 

located at certain points A and A ‘respectively, with reference to systems (1) and (2). 

Location of pointa A and A ‘with reference to the stationary axes z1 y1 z1 is determined 

by coordinates:a, p, y aad a', ,8', y’ 
aor, fiv’, y”’ 

which am related to coordinates a”, Be, $J and 

of the centers of gravity G and G’of the system (1) and (2) with respect to 
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the same axes by the following relationships 

u” = liu + a@, B” = LB + Bo, y” = hy + Yo 

O’ = L’a’ + a,‘, 

PI yo, ao’, 

fj”’ = h.‘fl’ + PO’, y”’ = h’y’ + yo 

Hereao, B o’, and To are arbitrary constants. 

(1.1) 

Velocities of points A and A ‘are parallel to the velocities of centres of gravity G of 

system (1) and G’of system (2) respectively. Let smooth constraints applied to the system 

be such, that, one can introduce into systems (1) and (2) p ossible helical displacements 

without changing the relative distribution of points within each part of the system. 

These helical displacements of 

systems (1) and (2) can be represented 

(according to Hamilton) by two bi- 

vectors the principal parts of which 

(rotations) are oriented along two 

straight lines or and at’, passing 

through the moving points A and A ‘. 

Moments of bivectors (translational 

displacements) also pass through the 

points A and A ‘respectively in the directions of the straight lines n and n’(fig.). 

For system (1) displacements of an arbitrary points of a rigid body are obtained in 

projections on stationary axes according to Euler’s equations by the cyclic permutation S 

of fonr goups of letters(q, yl, z,; a, p, y; n,, crl, pl; I, y, z) according to equation 

6x1 = 6a + (JIZ - ply (S) (1.2) 

Here a1, or, and ~1 are the projections on stationary axes of instantaneous infinitely 

small rotation of the solid body (1) ; &c, SPY and 6~ are projections of the displacement 

of point A along the straight line n. Equations (1.2) can be represented in the form 

6x1 = h, + (JlZl - PlYl (8) (1.3) 

Here the cyclic permutation includes the group of letters &, ~r and ur, the magnitudes 

of which are given by 

al=&&- sly + PlP (8) (1.4) 

Displacements (1.3) of the rigid body consist of rotation around an axis referred to the 

origin of the stationary system of coordinates, rotational components being al. (Jr. and PI 

and translation with components Al, pl, and vl. The latter, according to (1.4), consists 

of two parts: the first part is a translation which coincides with the displacement of the 

point A (a, p, y); the second part coincides with displacement of a point of the solid 

body located at the origin of the stationary system of coordinates, as a result of rotation 

of the solid body aronnd an axis with respect to point A. Projections of the components 

of this rotation on stationary axes will be the same; nl, (Jr, and Pr- 

Equations (1.2) express displacements of a solid body consisting of a translation and 
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rotation if the translation which coincides with displacement of point R is characterized 

by a free vector with components 6a, a@, and 8~ and if the rotation around the axis which 

goes through the origin of non-stationary system of axes A, is characterized by a sliding 
vector with components ~1, or, and pt. 

Equations (1.3) are obtained es a result of bringing these two vectors (the free vector 

and the sliding vector) to the origin of the stationary system of coordinates. 

Freedom in the ohoioe of the stationary system of coordinates makes it possible to 

orient the axis x1 parallel to the axis of rotation and to place it so, that for the same 

orientation of x and y axes 6x = ($g = 0. 

Then, in such a stationary system of coordfnate axes xI*gI*rt* we shall have 
xr = ut = 0, and Eqaations for displacements will take the form 

(1.5) 

The displacement will be an infinitely small helical displacement of the rigid body, 
consisting of a positive displacement along the x*1 axis by the qaantity u, end of a 
rotation around this axis by the quantity p, [l]. 

Designating all quantities related to the coordinate system x ‘y ‘I ‘ by the index 

‘prime ebove’ and introducing the free and sliding vectors which characterize the displace- 
ments of system (2) as a rigid body, we obtain 

&xr’ = 6a’ + ul’z’ - pr’g’ (8’) (1.6) 

The remaining equations are obtained by cyclic permutation of letters 

S’ (xl’7 gi’ Q’; a’7 @‘I y’; &'r aI'9 PI'; 3" $9 2') 

Here rtl’, u*‘, and p: are the projections on stationary axes of an instantaneous 

infinitely small rotation of solid body (2) ; &x, S& and 6~ ece the projections of translation 

of the pofnt A ‘along the straight line n : 

Equations (1.2) and (1.6) will correspond to infinitely small helical displacements of 

solid bodies (1) and (2). 

Let us draw a plane 7~ parallel to the vectors erI and aI’ and let the plane pass 

through the point C located at the intersection of two straight lines with constant direction 

AB and A ‘B ‘. Points B and B ‘have fixed locations in coordinate systems xyr and .x’~‘r’ 

respectively. 

We shall construct from point C two unit vectors e and e’iu the plane 7r and parallel 

to the vectors err and err’ respectively. 

Let a, b and c be the coordinates of point B in the system of axes xyx ; let u ‘, b ‘and 

c ‘be the coordinates of point B ‘in the system of axes z’g’b; and let I,, m,, no and 
20’~ mo’:, na’ be the direction cosines of the unit vectors e and e’. 

Let us now designate by p & # COW) the ratio of sections AC : AB ; by p ’ 
@L’ # con&) the ratio of sections A’C : A’B’ (see figure) ; by X, Y and 2 the projections 
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of external forces acting on the points of the system 12; by M the sum of masses of 

system (1) ; by ,M’the sum of masses of system (2) and by A and A’ vectors, which coincide 

with sections AB and A ‘B ’ respectively. 

Coordinates of the center of gravity G of system (1) relative to the axes xyz and co- 

ordinates of center of gravity G ‘of system (2) relative to the axes x ‘y ‘z ‘will respectively 

be 

(a - 1) a + a,, (h - 1) P -t B", (h--l)Y+Yo 
(h' - 1)a' $-a,,', (A' - 1) B' + Bol, (1' - I) y' + To' 

In the moving system of coordinates connected with points A and A ‘we have 

Zmx = M [(h - 1) a + a,], Zmy = M I(h - 1) B + &I 
Zmz = M [(A - 1) y f rul 

Z’mr’ = M’ [(a.’ - 1) a’ $ a,,‘], 2 ‘my’ = M’ [(h’ - 1) fi’ + f&,‘] (1.7) 

Z’ mz’ = M’ ((I.’ - 1) y’ + yo’] 

Here and in the following we use the notation: 2 is the sum over the points of the 

system (1) ; c’is the sum over the points of the system (2). 

Properties of constraints placed on system A, are determined on the following 

premises : 
lo. The constraints are smooth and permit the rotation of system (1) about the straight 

line or and a positive displacement along the straight line n, rotation of system (2) about 

the straight line w,‘and positive a displacement along the straight line n’in the manner 

of rigid bodies. 

2’. Moving straight lines or and tir’passing through A and A ’ respectively, have fixed 

directions. 

3’. Straight lines n and n ‘are perpendicular to the planes passing through A’, aI’ 

and A, 01 respectively. 

We select possible displacements 81 (&z, @3, 6Y) along the straight line n and 

81’ (6a’, as’1 6Y’) along the straight line n ‘in such a manner that the following equations 

are satisfied. 

81’ = We X A (1.8) 

Here X’and X are constant coefficients of proportionality. 

The magnitudes of possible rotations o1 and a1 are selected so as to satisfy the 

following relations continuously 

or’ = Ku, (K=const) 

01 = (Ore, J-h = ql,, ol= olmO, Pl = W% (1.9) 
01 

' z a,'&, 
Jh ' = O,'l,', 01’ = cOl‘mO’, Pl ' = ol'nO 

Let possible helical displacements of rigid bodies (1) and (2) be selected such that 

when (1.7) and (1.8) are satisfied the following equations apply 

x’p’ = X’OI’, yJ.l = xor (x’, x = const) (1.10) 
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Forces acting on system A have the following properties : 
4’. Systems (1) and (2) are under the influence of arbitrary internal forces. 

59 If external forces acting on system (1) are summed under the assumption of 

invariability of the system, they are reduced at the point A to force F, which is located in 

a plane through A and is parallel to the straight lines A ‘C and wr’, and to the couple with 

the moment M”. 

Also the following is true 

Fol’A’ = 0 (1.11) 

6’. When external forces acting on system (2) are reduced at the point A ‘under the 

same assumptions, they result in forces F’and a couple with the moment M”‘. The force 

F’is located in a plane through A ‘parallel to the straight lines AC and co,. The follow- 

ing relationship is applicable 

F’olA = 0 

7’. Projection of the moment of the first couple on the direction or, multiplied by or 

added to the projection of the moment of the second couple on the direction or’, multiplied 

by or’, gives zero 

(1.13) 

This would take place for example when moments M”and M”‘are perpendicular to w1 

and pi’. 

Let the foroes of the system (1) which act on system (2) be reduced at the point A to 

reaction R (R,, R,, RZ) and a couple with a moment H the projections of which on the 

axes of coordinates xyz will be Iv,, Ht,, and H,, at the point A ‘to reaction R and a 

couple with a moment H’which has projections H’xs, H’J, and H’,p, on the axes x’y ‘I ‘, 

and at point C to reaction R and a couple the moment of which will be W 

W=R--AxR=H’-p’A’xR (1.14) 

In the reduction of reaction forces the mechanical system is assumed to be invariable. 

8’. Forces of action of the system (1) on system (2) are such that the moment W is 

perpendicular to the plane 7~, i.e. to vectors e and e’ 

w.e=o, W.e’=O (1.15) 

Instead of the requirement indicated, it could be assumed that the moment W is located 

in the plane perpendicular to a straight line which passes through the ends of the vectors 

01 and a,‘, constructed at the point C 

w. (e-o/)=0 

99 In reducing the indicated forces to the point C the following eqnation is satisfied 

ol (X - p) ReA = y’ (x’ - P’) Re’A’ 
(1.16) 
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This equation, could for example be satisfied if reaction R constructed at the point C 

was located at the intersection of planes passing through e, t\ and e’, ‘4’. 

Let us apply the fundamental principle of dynamics of systems of material points 

1 u nl~-X)8~l~(m~-Yj8yl+(~n~-2)[6~l}=il 

to the systems (1) and (2) assuming, that possible displacements are determined by 

Equations (1.2) and 11.6). In accordance with Equations fl.l), and (1.7) and Equations 

for transition from the stationary system of coordinates to the non-stationay one, we have, 

for the system (1) 

= 6a (ZX -Rx) + SP (ZY - lilt) + 6~ (22 - Rz) + %I Iz (G - zy) -&I + (1.17) 

f G1 [Z (2X - SZ) - HJ +- p1 [2: (ZY - yX) - W1] 

Here 

designate the sums of angular momenta with respect to the axes z,y, t of the system (1). 

lising the above principle, we have, for the system (2) in the same manner 

d& 
’ - = 8a’ (Z’X + Rx) _P 8f3’ (X’Y +- RJ + 87’ (2’2 _G RZ) 4 -t-P1 & 

(1,191 

~n;[x’(y’z-z’Y)~~H,;]~s’[z’(z’X- S’Z) + I-z,,‘] _G PI’ [B’ (iY - Sr’X) f H,,‘] 

Here Sr’, Sa’, and Sa’ have the same expressiq>ns as (1.18) (if the index ‘prime 

above’ is added to all quantities), and designate the sums of angular momenta with respect 

to the axes x’, y’, and z ’ of the system (2). 

Adding Equations (1.17) and (1.19) we obtain zero in the right hand side by virtue of 

Equations (1.8) and (1.9) and conditions (1.11 to 1.16). The left hand side gives the first 

integral 

+ b% f m&a + n&G + K (lo’si + mo’Sa’ + ndS8’) = const 

Equations (1.17) and (1.19) make it possible to obtain theorems of interaction between 

the parts (1) and (2) of the system ,I. The first integral (1.20) is the mathematical expression 
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for these theorems. It characterizes the mutual interaction of two parts of the system under 

the conditions earlier mentioned on the constraints, external forces and forces of inter- 

action of both parts. These theorems will constitute a certain generalization of the first 

two basic theorems of dynamics and will have different formulation for individual cases of 

action of momentum and principal moment of one part of the system on the momentum and 

principal moment of another part of the system. Examples of this are presented in section 

(2). 

There is no necessity here to give complete formulations of these theorems. They are 

understandable from methods of derivation of general theorems of dynamics of systems of 

material particles. 

Their brief contents is as follows: For a mechanical system, which consists of an 

arbitrary number of material points, with constraints placed on it which permit displace- 

ments with characteristics indicated in the points lo to 3’ and which is under the action of 

forces with characteristics indicated in the points 4’to 93 integral (1.20) is applicable. 

This integral will be a certain generalization of integrals of the first two general theorems 

of dynamics, the theorems about motion of the center of mass of the system and about the 

angular momentum of the system. 

2. Integrals of the first two general theorems of dynamics and generalized integrals of 

Chaplygin [3] are obtained as special cases of the integral (1.20). 

(01 We assume that Q’, fi’, and y’are constant, la = m, = 0, n = i; K = 0, and 

a=b=c=O. 

In accordance with (1.81, (1.9) and (1.10) tb’ 1s is equivalent to the situation where 

system (21 is absent while system (11 can rotate without change in configuration arround 

the straight line At. 

External forces acting in this case on the system (1) result in a moment which is with 

respect to the straight line AZ, equal to zero. Integral (1.20) gives Sa 5: coti, i.e. the 

generaliaed integral of the Chaplygin areas (section 1 of [3]). 

(b) We assume that x’ = x = x’ = x z 0, 1, = m, = lo’ = rn,’ P 0, and 

no = n,’ = 1. 

In accordance with (1.81, (1.91 and (1.101 th’ 1s is equivalent to the situation where the 

parts (11 and (2) of the system, have the properties of the point a of system (1) with 

reference to the constraints, external forces, centers A and A ‘and the axes At and A ‘I ‘. 

It follows from Expression (1.161 that for arbitrary R possible rotations (~1 and ol’ must 

be such that the moments of sliding vectors Ed, and %’ relative to the point C are equal. 

Point C must necessarily lie in the plane passing through u)r and (~11. Without 

sacrificing generality we can assume it to be on the straight line A ‘A. 

The constant K will be equal to the ratio of the segments CA : CA’. 

Interaction forces between the systems (11 and (21 have, according to (1.14) and (1.15), 

a moment equal to zero with respect to a straight line which is parallel to z and passes 

through the point C. This gives 
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fntegral (1.20) becomes equal to 

S, + KS,’ = const 

i.e. the integral of Chaplygin (integral (4), section 2 of [3]) is obtained. 

tc) We assume that %’ = 0, K = 0, IO = FE, = 0, and no 3 or_ = 1, 

In accordance with (1.81, (1.9) and (I.101 this is equivalent to the situation where the 

constraints permit the rotation of the system (1) about the moving straight line AZ and a 

translation of the system (2) in the constant direction n ’ , perpendicular to the vertical 

plane which passes through AC. Point C coincides with B and is fixed in the system of 

coordinates zyz. Displacements of the systems (1) and (2) are assumed to be the rigid 

body dispfacements. 

Forces of interaction of system (1) on system (2) yield according to (1.14) and (1.15) 

a moment equal to zero with respect to the axis parallel to As and passing through G. 

External forces actfng on the system (1) yield, according to (1.13) a moment equal to 

zero with respect to axis AZ. External forces acting on the system (2) yield, according to 

fl.ll), (1.12) and (1.13) an arbitrary couple, with moment @‘and force.F’focated in the 

plane through A ‘parallel to straight lines AC and tit. 

In this case, the integral (1.20) yields 
I 

xil’M’(a g-b $ +S,=corrst 
) 

From Equations (1.10) and (1.16) it follows, that x = 1. Equations (1.7) give 

1’M’ $+- = M’ -$- (a’++‘), 
dP’ 

h’M’r= M’$-(P’fg’) (a’+f’=u+f) 

(R’-bg’=P+g) 

Here f’and g’are the coordinates of the center of gravity G ‘of system (2) with 

respect to the axes z ‘y ‘z : while f and g are the coordinates of the center of gravity G ’ 

of system (2) relative to the axes qr. 

The integral becomes 

M’(a -g--bg +M 1 ( 
i.e. the form of integral of Chaplygin (integrul (ll), section 4, [3] ). This integral occurs 

for somewhat different forces and constraints [4] than those indicated by Chaplygin. 

3. The results obtained for a mechanical system of material points A can be general- 

ized in the same sense as discussed by Chaplygin in section 3, at the end of section 4 

and in section 5 of his paper [3]. Theorems and integral of kinetic energy of a mechanical 

system are related to the properties of a group of actual motions. 
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